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Abstract

Self-consistent averaging, using an auxiliary solution for an elliptical anisotropic viscous inclusion in an anisotropic viscous host, provides

estimates of the principal bulk viscosities of a dispersion of aligned elliptical viscous clasts in an isotropic or anisotropic viscous matrix.

Analysis and results are for a two-dimensional analog of a composite rock with clasts that are cylinders with axes normal to the plane of flow.

The ratio of principal viscosities, hn in clast parallel extension or shortening, hs in clast-parallel shear, m ¼ hn/hs, is smaller than that

obtained using an auxiliary solution in which the host is isotropic. Results for the limiting case of rigid clasts indicates that the latter

procedure overestimates the stress concentration in axis-parallel extension or shortening at intermediate clast volume fraction, f. If the matrix

is anisotropic, bulk anisotropy derives from both the shape anisotropy and the intrinsic anisotropy of the matrix, and unsymmetrical relations

for the principal viscosities and m( f) result. The results suggest that rheological anisotropy in rocks with a planar fabric is greatly reduced if

the components are lenticular in form rather than continuous layers. A general solution is given for an elliptical inclusion for the case that the

principal axes of anisotropy in both the host and the inclusion are oblique to the axes of the elliptical section and the host is subjected to

homogeneous stress far from the inclusion.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Rheological constitutive relations for composite rocks

for a flow whose length scale is much greater than that of its

mechanically distinct components must generally account

for anisotropy. Bulk constitutive relations for layered rock

may be readily written down (Treagus, 1993), given the

relations for the components. Application of the traction

continuity conditions on planar interfaces and the conditions

of coherency for the rate of deformation components

determine this result. For less regular composite geometry,

as for a deformed conglomerate with one or more clast

components in matrix (Treagus, 2002, 2003; Treagus and

Treagus, 2002), another method is required. These authors

treat the components as isotropic linear viscous fluids and

employ self-consistent averaging (SCA; Hill, 1965; Trea-

gus, 2002) to obtain estimates of bulk and component

properties of clast and matrix materials in a naturally

deformed conglomerate. This is a promising method of

pursuing the question re-iterated by Talbot (1999): “Can

field data constrain rock viscosities?”

This model is useful in treating any configuration of

several components if the effective geometry of each

component may be represented by a single aspect ratio.

The model ignores the contribution to the bulk anisotropy

from the intrinsic anisotropy of a component. In this paper, a

two-dimensional case is treated, in which the conglomerate

contains cylindrical clasts of elliptical cross-section, and is

subjected to plane deformation in the section normal to the

clast axes.

An example serves to motivate the problem. Given the

ratio of principal viscosities, m ¼ hn/hs, where hn is the

principal viscosity in lamination-parallel shortening or

extension and hs that in lamination-parallel shear, we may

compute the evolution of structures in anisotropic rocks

(e.g. Bayly, 1964; Cobbold et al., 1971). Low-slope

amplification of a sinusoidal perturbation with amplitude

uniform along its axial plane in shortening parallel to the

0191-8141/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsg.2004.04.004

Journal of Structural Geology 26 (2004) 1977–1987

www.elsevier.com/locate/jsg

E-mail address: rfletche@geosc.psu.edu (R.C. Fletcher).

http://www.elsevier.com/locate/jsg


stiff direction in a homogeneous anisotropic viscous fluid is

given by

dA

dt
¼ 2½4ðm2 1Þ þ 1� �DxxA ð1Þ

where A is amplitude and �Dxx is the basic-state rate of

shortening (Bayly, 1964; Fletcher and Pollard, 1999). For a

viscous bilaminate (Treagus, 2002) composed of alternating

layers of two isotropic viscous fluids with viscosities h1 and

h2, in proportions f1 and f2 ¼ 1 2 f1

m ¼ mU ¼
f1
h1

þ
f2
h2

� �
f1h1 þ f2h2

� �

¼ ð12 f Þ2 þ f ð12 f Þ Rþ
1

R

� �
þ f 2 ð2Þ

where f ¼ f2 and R ¼ h2/h1. The bilaminate has maximal

anisotropy, or maximumm, for a composite, andmU denotes

an upper bound. Strong folding instability requires the term

in brackets to be .20–30, or m . 4–5; instability is weak

if it is ,5–10, or m , 2–3. If the mechanical components

have clast-like or lenticular form, as in conglomerates or

gneisses, the ideal bilaminate may not afford a good

approximation. Treagus (2003) has estimated the principal

bulk viscosities of a dispersion of aligned elliptical

cylindrical clasts in a matrix, when both are isotropic

viscous fluids. The ratio ranges from m ¼ 1 for clast aspect

ratio a/b ¼ 1 (Fig. 1) to m ¼ mU, for a/b @ 1.

Treagus (2003) uses SCA to estimate the bulk properties

of a dispersion of aligned elliptical isotropic viscous clasts

in an isotropic viscous matrix using the auxiliary solution

for an elliptical inclusion in an isotropic matrix. In this

paper, use of a solution for an inclusion in an anisotropic

host yields substantially lower estimates for m. The

difference will affect interpretation of observations of

structures such as folds in anisotropic rock. Mandal et al.

(2000) estimate the bulk properties of a dispersion of

aligned ellipsoidal inclusions of viscous fluid in a viscous

matrix. Their method is significantly different from that

used here, and no attempt at a comparison between the

Nomenclature

A fold amplitude

a/b major to minor semi-axis of elliptical clast section

Dxx, Dxy rate of deformation components

DðiÞ
xx , D

ðiÞ
xy rate of deformation components in two mechanical components, i ¼ 1, 2

Dp
xx, D

o
xx rate of deformation components in inclusion and far-field

f volume (area) fraction of clasts

f1, f2 volume (area) fraction of two viscous components

m ratio of bulk principal viscosities

mU upper limit of ratio of bulk principal viscosities, for bilaminate

m1 ratio of principal viscosities of anisotropic matrix

N( f), N0( f) condensed notation for functions of f

R ratio of viscosities of clasts and matrix in isotropic/isotropic case

RG ratio of clast viscosity to geometric mean viscosity of anisotropic matrix

sxx, sxy deviatoric stress components

sðiÞxx , s
ðiÞ
xy deviatoric stress components in components, i ¼ 1, 2

spxx, s
o
xx deviatoric stress components in inclusion and far-field

t time

x, y coordinates in plane of flow

b, bn, bs ratio of principal viscosity to matrix viscosity

h1 viscosity of isotropic matrix

h2 viscosity of isotropic clast

hn, hs principal normal and shear viscosities of composite

hð1Þ
n , hð1Þ

s bulk principal viscosities in matrix

hp, hp
n, h

p
s bulk viscosities in inclusion

n shape factor, function of a/b

s, s p, s o mean in-plane normal stress, in inclusion, in far-field

sxx, syy, sxy stress components

sðiÞ
xx , s

ðiÞ
yy , s

ðiÞ
xy stress components in component materials, i ¼ 1, 2

sp
yy, s

o
yy stress components in inclusion & far-field

u function of n and f
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formulation and results of the present method and theirs has

been made.

2. Self-consistent averaging and Treagus’ (2003)

estimates

Self-consistent averaging to obtain the bulk properties of

a composite material has two steps. First, the components of

stress and rate of deformation in a representative element

of each component is obtained by some means. In a

common method, used here, the representative element is

modeled as an inclusion embedded in a homogeneous

material with the postulated bulk properties of the

composite. A solution to this auxiliary problem may be

found if the inclusion has ellipsoidal or elliptical cylindrical

shape. The bulk properties enter the solution, and these are

estimated by averaging the components of stress or rate of

deformation over the volume distribution of the components

and setting this equal to the applied value. The term

component is used here in two distinct but familiar ways.

Averaging leads to nonlinear, generally coupled, algebraic

equations in the bulk properties, whose order is equal to the

number of components.

To fix ideas, consider a bilaminate made up of two

isotropic viscous components. The inclusion in this case is a

single layer of one of the component fluids. We postulate

that the bulk constitutive relations, referred to as axes

parallel and normal to layering and specialized for plane

flow, are

Dxx ¼
1

2hn

sxx Dxy ¼
1

2hs

sxy ð3Þ

where sxx ¼ 1/2(sxx 2 syy) and sxy ¼ sxy are the deviatoric

stress components in plane flow in the x-, y-plane. Let a

layer with viscosity h1 be embedded in the medium parallel

to the principal axis x. Then

Dxx ¼ Dð1Þ
xx

1

2hn

sxx ¼
1

2hð1Þ
n

sð1Þxy sð1Þxx ¼
hð1Þ
n

hn

sxx ð4Þ

Since sð1Þ
yy ¼ sð2Þ

yy ¼ syy, averaging sxx yields

f1s
ð1Þ
xx þ f2s

ð2Þ
xx ¼ sxx ð5Þ

From Eq. (4), its equivalent for sð2Þxx , and Eq. (5), we

obtain the estimate

hn ¼ f1h1 þ f2h2 ð6Þ

Since, for the embedded layers

sð1Þxy ¼ sð2Þxy ¼ sxy ð7Þ

it is necessary to average the component of the rate of

deformation in the development

f1D
ð1Þ
xy þ f2D

ð2Þ
xy ¼ Dxy f1

sxy

2h1

� �
þ f2

sxy

2h2

� �
¼

sxy

2hs

hs ¼
f1
h1

þ
f2
h2

� �21
ð8Þ

The present exact results may be derived without

mentioning SCA, yielding Eq. (2).

Treagus (2003) notes that these estimates are symmetric

under interchange of indices 1 and 2, since both components

have the same geometric form. Treagus (2003) calls the

ratio m (her d), also symmetric under interchange of indices,

the anisotropy factor.

3. New auxiliary solution and further development of

estimates

In Treagus’ (2003) estimate for the principal viscosities,

hn and hs, of a dispersion of aligned cylindrical inclusions,

or clasts, with elliptical cross-section embedded in matrix,

the auxiliary solution used is that for an isotropic inclusion

in an isotropic medium. Thus, a question as to the self-

consistency of the method arises. On the other hand, SCA

might be said to have only the following three requirements.

(i) Estimates for the average stress and rate of deformation

components are obtained by any plausible means. (ii) The

Fig. 1. Schematic of composite made up of aligned elliptical clasts in

matrix. (a) Dispersion of aligned elliptical cylindrical clasts of component 2

in matrix of component 1. Clasts, with aspect ratio a/b ¼ 2, are positioned

on a regular hexagonal grid; the area fraction of clasts is f ø 0.30. The

formulation is not restricted to a regular array: clasts may have random

position and size, but must have equal aspect ratio. (b) Inclusion-in-host

configurations for the auxiliary problem for clast and matrix components;

the homogeneous host is light gray to suggest intermediate properties.
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volume average of a Cartesian tensor component should

equal its bulk value. (iii) Estimates of bulk properties

derived by averaging stress components should equal those

obtained by averaging rate of deformation components. The

auxiliary problem used by Treagus (2003) may be viewed as

the best available. Now another is given.

A solution (Appendix A) for an elliptical inclusion with

principal viscosities hp
n and hp

s embedded in a host with

principal viscosities hn and hs, with the inclusion aligned in

a direction of maximum stiffness common to host and

inclusion, gives inclusion stress components

sp ¼ so þ

a

b
2

b

a

� �
a

b
þ

b

a

� �
2
664

3
775 spxx 2 soxx
� �

spxx ¼

ffiffiffi
m

p
þ n

� �
ffiffiffi
m

p
þ n

hn

hp
n

� �
2
664

3
775soxx

spxy ¼

ffiffiffi
m

p
þ n

� �
ffiffiffi
m

p hs

hp
s

þ n

� �
2
664

3
775soxy

ð9Þ

where

s ¼
1

2
sxx þ syy

� �
ð10Þ

s p and s o are inclusion and far-field host quantities,

respectively, and

m ¼
hn

hs

n ¼
1

2

a

b
þ

b

a

� �
ð11Þ

If the inclusion is circular, n ¼ 1, and the host is

isotropic, m ¼ 1, Eq. (11) reduces to

sp ¼ so spxx ¼
2hp

n

hp
n þ h

� �
" #

soxx

spxy ¼
2hp

s

hp
s þ h

� �
" #

soxy

ð12Þ

These amend the result for an isotropic inclusion by an

intuitively reasonable dependence on hp
n and hp

s .

The relations (9) are more complicated than those used

by Treagus (2003) because both the inclusion and the host

material are anisotropic. For isotropic host and inclusion,

Eq. (9) reduces to relations equivalent to those used by her,

with

spxx ¼
1þ nð Þ

1þ n
h

hp

� �
2
664

3
775soxx spxy ¼

1þ nð Þ

h

hp
þ n

� �
2
664

3
775soxy ð13Þ

n is her shape factor p; h p applies to the inclusion and h to

the host.

Now apply SCA to sxx, using Eq. (13). Suppose the

dispersed cylindrical clasts have the same aspect ratio, so a

single value of n applies. The relation (13) gives sð2Þxx when

h p is replaced by h2. To implement SCA, we require an

estimate for the matrix component with viscosity h1. A

somewhat counter-intuitive step is taken in which the matrix

component is represented by an inclusion with the same

aspect ratio as the clasts (Treagus, 2003; Fig. 1). It was

initially felt that the interstitial matrix component might be

better approximated by an equant inclusion, n ¼ 1, but as

may be shown, unless the representative inclusion for both

components has the same shape, the estimate obtained by

averaging sxx will differ from that obtained by averaging

Dxx, and the condition (iii) will not be satisfied. Using the

same aspect ratio n1 ¼ n2 ¼ n, and applying SCA, or

ð12 f Þsð1Þxx þ fsð2Þxx ¼ sxx ð14Þ

the first expression in Eq. (13) gives

nb2 þ f þ ð12 f ÞR
� 	

2 n ð12 f Þ þ fR
� 	
 �

b2 R ¼ 0 ð15Þ

where b ¼ h=h1, R ¼ h2=h1 and f ¼ f2.

Repeating the procedure for sxy

b2 þ n f þ ð12 f ÞR
� 	

2 ð12 f Þ þ fR
� 	
 �

b2 nR ¼ 0 ð16Þ

The relations (15) and (16) do not give the same values

for b; Eq. (16) may be obtained from Eq. (15) by replacing n

by 1/n (Treagus, 2003).

Because Eq. (15) may also be obtained from

ð12 f ÞDð1Þ
xx þ fDð2Þ

xx ¼ Dxx ð17Þ

Treagus (2003) identifies its solution as bn ¼ hn/h1, since

hn is the bulk viscosity in clast axis parallel extension or

shortening. She then evokes the symmetry between hn/h1

and hs/h1 for the bilaminate to identify the solution for

n ! 1/n, or for Eq. (16), with the ratio bs ¼ hs/h1. More

directly, we associate the value of b obtained for sxy or Dxy

with hs/h1.

This estimate has two difficulties. First, estimates for two

principal bulk viscosities are obtained using an auxiliary

problem with an isotropic host rather than one with the

effective anisotropic properties of the composite. The

association of the estimates for the viscosity of the isotropic

material, h, with those for the expected principal viscosities,

hn and hs, has an ad hoc element. The difficulty is more

clearly seen when the orientation of the long axes of the

clasts are preferentially, but not perfectly, aligned. A fixed

orientation of the principal axes of anisotropy for the bulk

material can no longer be identified in an isotropic host, so

that estimation of bulk properties cannot be carried out.

Second, the estimates obtained must be different from those

using the solution for an anisotropic host, although the

difference may not be quantitatively significant. We will

now discover whether this is so.

R.C. Fletcher / Journal of Structural Geology 26 (2004) 1977–19871980



Self-consistent averaging based on Eq. (9) for two

isotropic components leads to the relations

ffiffiffi
m

p
þ n

� � f

n
bn

R
þ

ffiffiffi
m

p
� � þ

ð12 f Þ

nbn þ
ffiffiffi
m

p� �
2
664

3
775 ¼ 1

ffiffiffi
m

p
þ n

� � f

nþ
bn

R
ffiffiffi
m

p

� � þ
ð12 f Þ

nþ
bnffiffiffi
m

p

� �
2
6664

3
7775 ¼ 1

ð18Þ

where bn and m are both unknown quantities, and a

simultaneous solution of the two equations is required. Eq.

(18) may be recast into the form of Eqs. (15) and (16)

nb2
n þ

n ffiffiffi
m

p h
f þ ð12 f ÞR

i
2 n

h
ð12 f Þ þ fR

io
bn 2

ffiffiffi
m

p
R

¼ 0

b2
n þ

n
n
ffiffiffi
m

p h
f þ ð12 f ÞR

i
2 m

h
ð12 f Þ þ fR

io
bn 2 nm

ffiffiffi
m

p
R

¼ 0

ð19Þ

These equations are not symmetric under interchange of

n and 1/n. To solve for given values of f, n and R, we

substitute a closely spaced set of values of m in the first

equation and solve it to obtain a closely spaced set of bn.

From these, the pair is chosen which minimizes the absolute

value of the left-hand side of the second equation, or is also

a solution to it.

Results for hn/h1, hs/h1 and m ¼ hn/hs obtained by

Treagus’ method and the present method for

R ¼ h2/h1 ¼ 100 are compared in Fig. 2a for a/b ¼ 1, 5

and 1, and in Fig. 2b for a/b ¼ 5, 18 and 1. Compare

figures 4 and 5 in Treagus (2003). The present method gives

a markedly lower bulk anisotropy. For small or large clast

fractions, f , 0.15 or f . 0.80, the results are nearly

coincident; for intermediate fractions the divergence is

large and maximum at f ¼ 0.5.

4. Dispersions of rigid clasts in an isotropic viscous

matrix

To seek insight into the difference between the present

estimates and those of Treagus (2003), consider aligned

elliptical rigid inclusions in an isotropic matrix. For this

case, the differences are greatest, and simple closed-form

solutions exist. Because viscosity estimates become infinite

for critical values of f, and because the forms of the curves

are generally simpler, we give results in terms of the

reciprocals of the normalized principal viscosities, 1/bn and

1/bs, and the ratio m ¼ bn/bs. For circular rigid inclusions,

the familiar result is

1

bn

¼
1

bs

¼
1

b
¼ 12 2f ð20Þ

This is a straight line in a plot of 1/b versus f, with the

viscosity estimate taking an infinite value at f ¼ 0.5. The

negative values of 1/b for larger f have no physical meaning.

Circular inclusions of equal radius packed in a square array

have f ¼ p/4 ¼ 0.78 and in a hexagonal closed-packed

array have a maximum value f ¼ p=ð2
ffiffi
3

p
Þ ¼ 0:91. Since the

dispersions need not have clasts of equal size, a limiting

value of f ¼ 1 may be approached. Thus, the critical value of

f at which the composite becomes rigid is far less than

Fig. 2. (a) Principal normalized viscosities bn ¼ hn/h1 and bs ¼ hs/h1 for

aspect ratios a/b ¼ 1, 5, and1; (b) ratiosm ¼ hn/hs for a/b ¼ 5, 18, and1.

Dashed lines are estimates using Treagus’ method; solid lines are the results

for the present method and the bilaminate limits.
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values at which the clasts are separated by ample

thicknesses of viscous fluid to allow bulk deformation.

For circular clasts in a square array, the separation between

clasts at f ¼ 0.5 is one half their radius. Certainly, there is no

reason to suppose that the effective viscosity of such an

array is infinite!

Applying SCA to the rigid inclusion case, we find the

simple, symmetric relations

1

bn

¼ 12 f 1þ
nffiffiffi
m

p

� �
1

bs

¼ 12 f 1þ

ffiffiffi
m

p

n

� �
ð21Þ

Substitution of Eq. (21) into

1

bn

¼
m

bs

ð22Þ

yields a quadratic equation in
ffiffiffi
m

p
, whose solution is

ffiffiffi
m

p
¼ uþ

ffiffiffiffiffiffiffiffi
u2 þ 1

p
u ¼

nf 2
f

n

� �
2ð12 f Þ

ð23Þ

Using values of m from Eq. (23) in Eq. (21) yields the

desired results.

The Treagus estimates are obtained by replacing
ffiffiffi
m

p
in

Eq. (21) by one, yielding

1

bn

¼ 12 f 1þ nð Þ
1

bs

¼ 12 f 1þ
1

n

� �
ð24Þ

from which

m ¼

12 f 1þ
1

n

� �
12 f 1þ nð Þ

ð25Þ

A plot of the reciprocals of the normalized principal

viscosities versus rigid inclusion fraction f, for a/b ¼ 5 as

computed by the two methods (Fig. 3a) illustrates their

similarities and differences. Both give nearly the same

results at small f < 0.10–0.15. The difference is greatest

near the critical fractions at which the estimated composite

viscosities become infinite. The present method yields,

surprisingly, a single fixed value at which this occurs,

f ¼ 0.5, independent of aspect ratio, a/b. Treagus’ method

gives two critical values, at the lower of which hn becomes

infinite (1/bn ! 0) and at the upper of which hs becomes

infinite (1/bs ! 0); both shift with a/b. Relative to that of

the present method, this result may be viewed as a

disproportionation, since the two critical values lie on

both sides of f ¼ 0.5. This behavior also applies to the

viscous-rigid bilaminate limit, for which the critical values

are f ¼ 0 þ and 1. The Treagus result approaches the

bilaminate limits as a/b increases, which may be viewed as

an argument in its favor.

Alternatively, the rigid-viscous bilaminate limit may be

considered to impose too strong a mechanical constraint on

bulk deformation of a dispersion of inclusions of finite

dimension. Existence of two critical values in the Treagus

estimate has the following consequences. When the lower

critical value is approached at f ¼ n/(1 þ n), from Eq. (24),

or, for a/b ¼ 5, at f ¼ 0.28, hn/h1 rises sharply towards an

infinite value. The composite is rigid in clast axis parallel

shortening or extension, but may still deform in axis-parallel

shear: the behavior of a rigid-viscous bilaminate. At the

higher critical value, f ¼ 1/(1 þ n), or for the present case,

f ¼ 0.72, the composite becomes perfectly rigid. If these

estimates were reliable, a composite in which elliptical

nearly rigid clasts were embedded in a viscous matrix would

exhibit remarkably large anisotropy.

The anisotropy factor m (Fig. 3b) varies smoothly as a

function of a/b through and beyond the critical value

f ¼ 0.5. However, at f ¼ 0.5, m ¼ 0/0 is indeterminate, and

the smooth variation beyond is obtained from a ratio of

negative reciprocal viscosities and, hence, meaningless. For

a/b ¼ 5, the maximum value reached at f ¼ 0.5 is the finite

value m ¼ 6.8.

The present results, in which the bulk anisotropic

properties of the composite are explicitly incorporated,

indicate that once the full integrity of a laminated material is

broken, as by division into a dispersion of elliptical clasts,

even of large aspect ratio, a much less constrained

kinematics at the microscopic scale sets in. Flow involves

both the principal normal and shear viscosities. A partial

approach to the bilaminate limit does take place as a/b

increases, although the critical fraction f ¼ 0.5 continues to

hold (Fig. 3c). As a/b increases, a larger and larger range in

f , 0.5 exhibits finite, but very large, viscosity in axis

parallel shortening or extension. Very large values of a/b are

required to approach the bilaminate limit for 1/bn. On the

other hand, the normalized shear viscosity rapidly goes to

the curved locus that terminates at f ¼ 0.5, rather than f ¼ 1,

as in the bilaminate limit.

Since the reciprocal of both principal viscosities go to

zero at f ¼ 0.5, substitution into Eq. (25) gives

mð0:5Þ ¼ n2 ð26Þ

This provides an upper estimate on m for any a/b and

f , 0.5, as well as for clasts with finite viscosity in an

isotropic matrix. By effective reduction to a viscous rigid

bilaminate at the critical f at which bn becomes infinite, the

Treagus method gives a limit m ! 1 for a dispersion of

rigid inequant clasts, except for the case a/b ¼ 1.

A simple explanation can be given for the critical values

of f at which estimated viscosities become infinite. For a

circular rigid inclusion in an isotropic matrix, from Eq. (13),

the stress concentration is two: the deviatoric stress in the

inclusion is twice the far field value. Thus, in contributing to

the average, 50% rigid component ‘uses up’ the far field

stress component, the deviatoric stress in the deformable

matrix must be zero or negative, and the composite cannot

deform. The stress concentration for the normal component

of the deviatoric stress in the elliptical rigid inclusion in an

isotropic host is (1 þ n)/n so that at f ¼ n/(1 þ n) the rigid

clasts support the entire far-field stress component, soxx. We
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conclude that, if the host is anisotropic, the stress

concentrations for both spxx and spxy obtained from the

auxiliary solution for f ¼ 0.5 are two, independent of the

aspect ratio, a/b. From Eq. (9), with hp
n !1 and hp

s !1

spxx ¼

ffiffiffi
m

p
þ n

� �
ffiffiffi
m

p

� 
soxx spxy ¼

ffiffiffi
m

p
þ n

� �
n

� 
soxy ð27Þ

The relation (26) gives
ffiffiffi
m

p
¼ n, and both coefficients do

indeed reduce to two at f ¼ 0.5. At smaller f,
ffiffiffi
m

p
, n, and

so the stress concentration is larger in spxx, i.e. 1þ n=
ffiffiffi
m

p
, and

smaller in spxy, i.e. 1þ
ffiffiffi
m

p
=n. In the former case, the product

of the stress concentration and f must be less than unity for

all f , 0.5. Note that the value of m is not determined solely

by the auxiliary problem, but arises from application of

SCA.

It is clear that material consisting of a dispersion of rigid

circular clasts of fraction f ¼ 0.5 in a viscous fluid can

deform. The proper conclusion is that the estimate of the

stress concentration at two is not a good one. One might get

a better estimate from a numerical model or from other

simple means (Paul, 1960). Treagus’ (2003) method of

estimation, using an elliptical inclusion in an isotropic

medium, gives a stress concentration on axis-parallel or

normal shortening of 1 þ 1/2(a/b þ b/a), which reduces to

two for a/b ¼ 1, but is otherwise larger. Hence, the volume

fraction at which the rigid component ‘uses up’ all the

available deviatoric stress for this component is the

reciprocal of this quantity, and the critical value of f is

less than 0.5. Again, the stress concentration is over-

estimated.

Three features of the present estimate suggest it is an

improvement over the Treagus estimate. (i) Estimates of the

stress concentration for rigid clasts by both methods, and by

extension, to deformable clasts, are too large for non-dilute

dispersions. Smaller estimates obtained from the present

method are more realistic. (ii) Estimated onset of rigidity in

both shear and shortening/extension parallel to clast axes is

more realistic in dispersions than a sudden onset of infinite

value in hn alone. (iii) Self-consistency achieved by treating

the host as anisotropic in the auxiliary problem should result

in a better estimate.

5. Symmetry in hn and hs

Treagus (2002) notices that curves for log (hn/h1) and

log (hs/h1) as functions of volume fraction f, are related

Fig. 3. Reciprocals of normalized principal viscosities (a), and their ratio

m ¼ hn/hs (b), for the case a/b ¼ 5. Dashed lines are obtained by Treagus’

method. (c) Reciprocals of normal and shear viscosity obtained by present

method for a/b ¼ 1, 5, 10, 30 and 100. The three curves on the right are for

1/bn for a/b ¼ 5, 10 and 100.
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through a center of symmetry at f ¼ 1/2 and (1/2)log (R), in

our notation, for the bilaminate and for a dispersion of

circular clasts. She infers that the same symmetry applies to

a dispersion of aligned elliptical inclusions and uses this to

obtain estimates for both principal viscosities.

For convenience denote these two curves as Nðf Þ ¼

log ðhn=h1Þ and N 0ðf Þ ¼ log ðhs=h1Þ. The symmetry means

that any straight line through the center of symmetry that

cuts one of the curves will cut both at points equidistant

from it. In the isotropic case, a single curve is cut twice by

lines of limited orientation through the center of symmetry.

For such pairs of points, since their f-coordinates, f and

1 2 f, will be equally-spaced from the center of symmetry,

f ¼ 1/2, this condition requires that their vertical distance

from the line (1/2)log (R) be equal or

Nð12 f Þ2 1
2
log ðRÞ ¼ 1

2
log ðRÞ2 N 0ðf Þ

Nðf Þ2 1
2
log ðRÞ ¼ 1

2
log ðRÞ2 N 0ð12 f Þ

ð28Þ

or

Nð12 f Þ þ N 0ðf Þ ¼ N 0ð12 f Þ þ Nðf Þ ¼ log ðRÞ ð29Þ

From the definition of the ratio of bulk viscosities

Nðf Þ2 N 0ðf Þ ¼¼ log ðmÞ ð30Þ

Re-arranging Eq. (29)

Nð12 f Þ2 N 0ð12 f Þ ¼ Nðf Þ2 N 0 ðf Þ ð31Þ

Thus, a necessary condition for a center of symmetry is that

mð12 f Þ ¼ mðf Þ ð32Þ

Indeed, this applies for the bilaminate. The relation (32) and

the condition that the curves for hn and hs intersect at f ¼ 0

and 1 are necessary and sufficient conditions for the center

of symmetry, yielding Eq. (28).

Treagus postulates that the N-curves providing estimates

for hn/h1 for intermediate aspect ratio materials may be

augmented by N0-curves by this operation, providing

estimates for hs/h1. It is not clear that the fact that the

isotropic curve and the bilaminate limits possess a center of

symmetry requires that the curves for intermediate a/b do as

well. The present estimates for hn/h1 and hs/h1 do show this

symmetry, supporting her conjecture.

6. Aligned isotropic inclusions in an anisotropic host

In many natural examples, the matrix is intrinsically

anisotropic. Deformed conglomerates (Treagus and Trea-

gus, 2002) may have well-developed matrix foliation.

Foliation will tend to wrap around clasts, and be weaker

in strain shadows and stronger in strain concentrations, so an

assumption of a homogeneous matrix is an approximation.

The anisotropic matrix case allows a connection to be made

between the bilaminate limit, in which one layer component

is anisotropic, as in Bayly’s (1970) study, and the clast/

matrix geometry. Rocks may often have anisotropic

components, such as anisotropic clasts of metamorphic

rock. The detailed results developed here are limited to

cases in which the principal axes of anisotropy of clasts and

matrix coincide with the shape axes, but the solution in

Appendix A covers the others.

When either matrix or clasts are anisotropic and the

clasts are elliptical, the question arises as to the relative

contributions of the intrinsic anisotropy of one or both

components and the clast shape to the bulk anisotropy. The

low values of m estimated for shape anisotropy suggest that

it may not always be the more significant contributor. Here,

the case of isotropic clasts in anisotropic matrix is

considered.

Returning to Eq. (9), we may write the SCA relations for

the general case, in which hp
n – hp

s . Since the matrix is

anisotropic, with principal viscosities hð1Þ
n and hð1Þ

s , the

question arises as to which to use in the normalization. We

choose hð1Þ
n , so that

bn ¼
hn

h
ð1Þ
n

R ¼
h2

h
ð1Þ
n

ð33Þ

and introduce the additional parameter

m1 ¼
hð1Þ
n

h
ð1Þ
s

ð34Þ

The first relation in Eq. (19) then remains the same and

Fig. 4. Principal viscosity ratio, m ¼ hn/hs, for R ¼ 100, m1 ¼ 10, and

a/b ¼ 1, 5, 18, 30, and 1.
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the second becomes

m1b
2
n þ

n
n
ffiffiffi
m

p h
f þ ð12 f Þm1R

i
2 m

h
ð12 f Þ þ fm1R

io

£bn 2 nm
ffiffiffi
m

p
R ¼ 0

ð35Þ

The method of solution for m and bn is the same as that used

earlier.

For a moderately anisotropic matrix, m1 ¼ 10, and much

stiffer clasts, R ¼ 100, adding equant clasts, a/b ¼ 1,

diminishes the bulk anisotropy (Fig. 4), effectively elim-

inating it at f ¼ 0.5. A very large clast aspect ratio is needed

to approach the bilaminate limit, as in the case of an

isotropic matrix.

An alternative characterization of the matrix/clast

contrast

RG ¼
h2ffiffiffiffiffiffiffiffiffi

h
ð1Þ
n h

ð1Þ
s

q ¼ R
ffiffiffiffi
m1

p
ð36Þ

is fixed to give the result shown in Fig. 5. A sharp transition

occurs between composites dominated by matrix anisotropy

to those dominated by shape anisotropy (Fig. 5). The value

of f at which the maximum occurs is given as a second set of

contours. In the lower region, the maximum occurs at small

clast fraction and the anisotropy is dominated by that of the

matrix; in the upper region, the maximum occurs at a clast

fraction approaching f ¼ 0.5, and bulk anisotropy is

dominated by shape anisotropy. At the transition, the two

contribute sub-equally.

7. Summary and conclusions

An auxiliary solution for an elliptical inclusion in an

anisotropic viscous host is used to obtain estimates for the

bulk properties for a dispersion of aligned, isotropic viscous

clasts in an isotropic viscous matrix. In the spirit of previous

studies, the host is treated as having the postulated bulk

constitutive relations of the composite. Treagus (2003)

instead treats the host in the auxiliary problem as isotropic.

The two methods give substantially different estimates, with

the present method giving weaker anisotropy, as measured

by the principal viscosity ratio m ¼ hn/hs. Study of the

special case of a dispersion of rigid elliptical inclusions

suggests that the present estimates are to be preferred.

The tendency for the strength of anisotropy to be

markedly reduced when the composite differs from the

bilaminate limit may explain a reduction in small-scale

folding in gneissic rocks in which mineralogically distinct

domains are of lenticular form. Treagus (2003) evaluates

values of m from independent estimates of relative

component viscosity. These values apply to an ideal

bilaminate, but estimates for clast-matrix rocks using the

same relative viscosities would be smaller by the present

method. Folding instability of such rocks would be

extremely weak.

The method allows the more general case of isotropic

inclusions in an intrinsically anisotropic matrix to be

treated, and a transition in behavior occurs between clast

concentrations in which the bulk anisotropy is dominated by

the intrinsic anisotropy and those in which it is dominated

by shape anisotropy.

A general solution for anisotropic inclusion and host,

with principal axes of anisotropy oblique to the shape axes

of the inclusion, is given.
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Appendix A. Solution for elliptical anisotropic inclusion

in an anisotropic matrix

This solution is obtained from that for an elliptical cavity

in an anisotropic elastic body in plane strain (Lekhnitskii,

Fig. 5. Contours of maximum composite anisotropy, m, and the clast

fraction, f, at which it occurs in a matrix with RG ¼ 100 in a/b, m1-space.
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1963). The procedure for replacing the cavity with an

elliptical inclusion (Eshelby, 1957) guarantees continuity of

tractions and velocity at the interface. Specialization to

incompressible host and inclusion, and replacement of

infinitesimal elastic strain with the rate of deformation

transforms the elastic solution to that used here.

Coordinate axes x and y are taken parallel to the principal

axes of the elliptical inclusion. Constitutive relations

specialized for plane flow are, for the host

Dxx ¼ b11 sxx 2 syy

� �
þ b16sxy Dyy ¼ 2Dxx

Dxy ¼ b16 sxx 2 syy

� �
þ

b66

2
sxy

ðA1Þ

The orthotropic anisotropy of the inclusion, as well as that

of the host may both have principal axes oblique to the

‘shape’ axes of the elliptical inclusion. They have the same

form as in Eq. (A1), but with all quantities with an asterisk.

If d is the angle between the principal axes of anisotropy in

the host and the ellipse axes, and hn and hs are the principal

viscosities in foliation-parallel shortening/extension and

shear, respectively, then

b11 ¼
1

8hn

ð1þ mÞ þ ð12 mÞcos4d½ �

b66

2
¼

1

4hn

ð1þ mÞ2 ð12 mÞcos4d½ �

b16 ¼
1

4hn

ð12 mÞsin4d

ðA2Þ

with equivalent expressions for the inclusion. The solution

for the stress and velocity mediating between the homo-

geneous far field stress and that in the inclusion depends on

the roots, mk, of the characteristic equation associated with

the fourth-order equation in the Airy stress function

obtained by substituting the constitutive relations into the

compatibility equation

b11m
4 þ 2b16m

3 þ b66 2 2b11

� �
m2 þ b11 ¼ 0 ðA3Þ

The solutions are

m1 ¼ a1 þ ib1; m2 ¼ a2 þ ib2 ðA4Þ

and their complex conjugates, where

a1 ¼
2
ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p ffiffiffi
m

p
2

ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p
cos2d

� �
sin2d

ðmþ 1Þ2 ðm2 1Þcos4d½ �

a2 ¼
22

ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p ffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p
cos2d

� �
sin2d

ðmþ 1Þ2 ðm2 1Þcos4d½ �

b1 ¼
2

ffiffiffi
m

p
2

ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p
cos2d

� �
ðmþ 1Þ2 ðm2 1Þcos4d½ �

b2 ¼
2

ffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffi
ðm2 1Þ

p
cos2d

� �
ðmþ 1Þ2 ðm2 1Þcos4d½ �

ðA5Þ

The boundary conditions for continuity of velocity at the

host inclusion interface are substantially simplified for

incompressible media. Relations important in simplifying

the velocity boundary conditions, which were initially

derived for compressible elastic solids are

a1a2 2 b1b2 ¼ 21 a1b2 þ a2b1 ¼ 0

a2
1 þ b2

1

� �
a2
2 þ b2

2

� �
¼ 1

ðA6Þ

The velocity boundary conditions then yield the follow-

ing relations between the components of homogeneous

stress in the inclusion, denoted by an asterisk, as in spxx and

the far field stress, denoted by a superscript, as in soxx. These

are

sp ¼ so þ

 
b

a
2

a

b

!
 
b

a
þ

a

b

!
 
spxx 2 soxx

!

£

"
2

 
b

a
þ

a

b

!
21 

b1 þ b2

!
b11 þ 2bp

11

#
spxx

þ

" 
a1 þ a2

!
b11 2 bp

16

#
spxy

¼

"
2

 
b

a
þ

a

b

!21 
b1 þ b2

!
b11 þ 2b11

#
soxx

þ

" 
a1 þ a2

!
b11 2 b16

#
soxy

22

" 
a1 þ a2

!
b11 2

 
b16 þ bp

16

!#
spxx

þ

" 
b

a
þ

a

b

! 
b1 þ b2

!
b11 þ bp

66

#
spxy

¼ 22

" 
a1 þ a2

!
b11 2 2b16

#
soxx

þ

" 
b

a
þ

a

b

! 
b1 þ b2

!
b11 þ b66

#
soxy

ðA7Þ

Having solved these relations for the stresses in the

host, the vorticity in the inclusion, v p, is related to the
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far-field value, v o, by

2vp

b

a
2

a

b

� �
b

a
þ

a

b

� �
2
664

3
775 b1 þ b2

� �
b11s

p
xy

2 2 a1 þ a2

� �
b11 2 b16

� 	
sp

¼ 2vo

b

a
2

a

b

� �
b

a
þ

a

b

� �
2
664

3
775 b1 þ b2

� �
b11s

o
xy

2 2 a1 þ a2

� �
b11 2 b16

� 	
so ðA8Þ

In the present application, the inclusions are aligned

along the principal axes of anisotropy in the host, so

that d ¼ 0. Quantities used in the general conditions

obtained from the velocity boundary conditions reduce

to

a1 þ a2 ¼ 0 b1 þ b2 ¼ 2
ffiffiffi
m

p
ðA9Þ

Excluding the first relation in Eq. (A7), which continues

to hold, the remaining two conditions reduce to

2
b

a
þ

a

b

� �21 ffiffiffi
m

p
b11 þ bp

11

" #
spxx

¼ 2
b

a
þ

a

b

� �21 ffiffiffi
m

p
b11 þ b11

" #
soxx

2
b

a
þ

a

b

� � ffiffiffi
m

p
b11 þ bp

66

� 
spxy

¼ 2
b

a
þ

a

b

� � ffiffiffi
m

p
b11 þ b66

� 
soxy

ðA10Þ

These are the relations used in the text.
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